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Robust Multigrid Preconditioner for Fast Finite
Element Modeling of Microwave Devices

Yu Zhu, Student Member, IEEE,and Andreas C. Cangellaris, Fellow, IEEE

Abstract—A robust preconditioning technique is presented
for the fast finite element modeling of microwave devices. The
proposed preconditioner is based on a multigrid scheme for the
vector-scalar potential finite element formulation of electromag-
netic problems. Numerical experiments from the application of
the new preconditioner to the finite element analysis of microwave
devices are used to demonstrate its superior numerical conver-
gence and efficient memory usage.

Index Terms—Finite-element method, multigrid methods,
nested grids, vector and scalar potential formulation.

I. INTRODUCTION

T HE FINITE-element method (FEM) is one of the most
effective and versatile techniques for the modeling of

complex microwave devices [1]. Its application to practical
engineering problems often results in large linear systems
requiring iterative methods for their numerical solution.
However, the convergence of iterative solvers tends to be
unpredictable for electromagnetic wave problems, even when
common preconditioners, such as incomplete LU factorization,
are being used to improve convergence. The reasons for the
slow convergence of the iterative solver are by now well
understood and are associated with the spurious dc modes
contained in the null space of the curl operator [2], [3], and
the ill-conditioning of the FEM matrix resulting from the
oversampling of the low-frequency physical modes [5], [6]. As
it was proposed in [4], the spurious dc modes can be canceled
by introducing a spurious electric charge and imposing the
divergence free condition, . Use of the vector-scalar
potential ( ) formulation for the development of the FEM
approximation is most suitable for this purpose. On the other
hand, the difficulties associated with low-frequency physical
modes can be tackled well using the nested multigrid method
[6], [7]. More specifically, those modes that are over-sampled
on the original FEM grid can be solved without loss of accuracy
using a coarser grid and, subsequently, through an interpolation
process, projected back onto the original grid.

The success of these remedies has prompted their combina-
tion into a nested multigrid vector-scalar potential finite element
solver that was shown to exhibit outstanding convergence in
conjunction with the analysis of two-dimensional electromag-
netic scattering problems [7]. This paper presents the extension
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of this new solver to the robust FEM analysis of three-dimen-
sional electromagnetic devices.

Consider a three-dimensional microwave device as shown in
Fig. 1. The weak statement of the governing electric field vector
Helmholtz equation

(1)

using tangentially continuous edge elementsis well known
and is given by

(2)

In order to address the general case, the computational domain
is assumed to be bounded by both microwave port boundaries

( , ) and a numerical truncation boundary
of on which a first-order absorbing boundary condition is
imposed.

On each waveguide port, it is assumed that the associated
modes are available for the representation of the fields. To sim-
plify the presentation and without loss of generality, it is as-
sumed that at each waveguide port only the fundamental mode
propagates. Following standard microwave circuit analysis pro-
cedures, let be the excitation port. The weak form of the
driven problem becomes

(3)

where is the propagation constant for theth port and is
the normalized field distribution of the excitation mode on.
The associated FEM matrix form of the above weak statement
is

(4)

Once the numerical solution has been obtained, the reflection
coefficient at port and the transmission coefficients at the
remaining ports are obtained as follows

(5)
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Fig. 1. Convergence behavior for various cube sizes.

The multigrid preconditioning used for the iterative solution
of (4) is described next. In the iterative solution of (3), the
pseduo-residual equation

(6)

is transformed to the matrix equation for the vector and scalar
potential formulation.

As suggested in [4], the electric field is written as
. Thus the weak form of the vector wave equation (1) is

(7)

The weak form of the divergence-free equation
is obtained through its multiplication with the gradient of the
scalar basis

(8)

In matrix form, (7) and (8) are written as

(9)

where , and contain the expansion coef-
ficients for the vector and scalar potential, respectively, and the
entries of the remaining matrices become evident through a di-
rect comparison of (9) with (7) and (8).

Let denote the space spanned by the scalar basis functions
, and the space spanned by the vector edge-element basis

functions . (Whitney-0 form) is a subset of (Whitney-1
form) as discussed in [8]. Thus a transition matrix exists such
that

(10)

Consequently, matrix of (9) can be written in terms of (4)

(11)

where is the identity matrix [4].
This result suggests the following method for the calculation

of the pseudo-residual equation of (6). First, . Next, the
equation is solved for the expansion coefficients
of the vector potential. This is followed by a correction step
associated with the explicit imposition of the weak form of the
divergence-free requirement, which involves the solution of the
next equation

(12)

The approximate solution of these two equations is effected
either through an incomplete Cholesky factorization or through
Gauss–Seidel method. Once the approximate solution on the

formulation is obtained, it is transformed back tofor-
mulation using the relationship

(13)

The expansion of the single-level preconditioner of the
pseudo-residual equation to multilevel is described in the
following typical multigrid pseudo-code, MG( , ).

1)
2) if coarsest grid, then solve
3) else

3a) Relax( , ) for times.
3b)
3c) MG( , )
3d)
3e) Relax( , ) for times.

Relax( , ) is the single-level preconditioner which
projects the problem to the formulation in order to
impose the divergence-free condition explicitly. is the
restriction operator that maps the residual of the fine grid onto
the coarser grid; is the interpolation operator that maps the
correction obtained on the coarser grid onto the fine grid. In
[7], it is shown is the transition matrix between the bases
on the coarse and fine grids and is its transpose.

II. NUMERICAL RESULTS

To implement the iterative FEM solver, the proposed precon-
ditioner is combined with the conjugate gradient (CG) method.
All calculations discussed in this paper were done on a Pen-
tium III 600 MHz PC. The stopping criterion for the iterative
solver was where . For all
the examples, a two-level multigrid was used, with the number
of pre-smoothing and post-smoothing operations taken to be

.
The low-pass filter studied in [1] is analyzed first. The dimen-

sions of the filter are shown in the insert of Fig. 2. The first-order
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Fig. 3. Convergence of the FEM solution of the low-pass filter.

Fig. 2. Magnitude ofS parameters for a low-pass filter.

absorbing boundary is placed 4mm away from the substrate and
the side ends of the filter. On the finest grid, the average grid
size is 0.79 mm, and the number of unknowns is 60 534. On the
coarse grid, the average grid size is 1.57 mm and the number of
unknowns is 7823. The calculated scattering parameters are in
very good agreement with the results in [1].

The excellent convergence of the preconditioned iterative
solver is demonstrated through the curves in Fig. 3. The
required CPU time for the solution at 1, 10, and 20 GHz is
21.72, 27.58, and 35.21 s, respectively. The required memory is
20 MB. On the average, 10 iterations per frequency point were
required over the 0.1–20 GHz bandwidth, with corresponding
CPU time of 25 s. For the sake of comparison, it is mentioned
that the FEM model of [1] with 33 352 unknowns required 20
min per frequency point in the lower frequency range and 10
min per frequency point for higher frequencies.

The FEM model of the annular microstrip resonator shown
in the insert of Fig. 4 required a 18 18 2.635 mm domain
wit h absorbing boundaries set 2 mm away from the structure.
On the fine grid, the average grid size was 0.70 mm and the
number of unknowns 27 840. On the coarse grid, the grid size
was 1.4 mm and the number of unknowns 3521. The calculated
scattering parameters are in excellent agreement with the mea-
surement data in [9]. Once again, the convergence of the solver
was excellent, with ten iterations per frequency and 11 seconds

Fig. 4. Magnitude of theS parameters for an annular microstrip resonator.

of CPU time required on the average for the solution at each fre-
quency point over the 1–10 GHz bandwidth of interest.

III. CONCLUSION

In conclusion, an efficient preconditioner has been proposed
and demonstrated for the robust, expedient, and broadband fi-
nite element analysis of microwave devices. Through the com-
bination the formulation of the FEM approximation with
the multigrid method, the ill-conditioning of the FEM matrix is
avoided, and a fast converging conjugate gradient-based itera-
tive FEM solver results. On-going studies explore the extension
of the new algorithm to a broader class of electromagnetic prop-
agation, radiation, and scattering problems.
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