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Robust Multigrid Preconditioner for Fast Finite
Element Modeling of Microwave Devices

Yu Zhu, Student Member, IEEEBNnd Andreas C. CangellasiBellow, IEEE

Abstract—A robust preconditioning technique is presented of this new solver to the robust FEM analysis of three-dimen-
for the fast finite element modeling of microwave devices. The sjonal electromagnetic devices.

proposed preconditioner is based on a multigrid scheme for the  cqngider a three-dimensional microwave device as shown in

vector-scalar potential finite element formulation of electromag- Fig. 1. Th K stat tof th . lectric field t
netic problems. Numerical experiments from the application of Ig. 1. 1he weak statement of the governing electric neld vector

the new preconditioner to the finite element analysis of microwave Helmholtz equation
devices are used to demonstrate its superior numerical conver-

_ 5 5
gence and efficient memory usage. VXV XE—wpoeoer b =0 1)
Index Terms—Finite-element method, multigrid methods, using tangentially continuous edge elemeditss well known
nested grids, vector and scalar potential formulation. and is given by
VX@-VxEdv—jwug | 7xH-@ds
|. INTRODUCTION Q 59
HE F!NITE-eIement'method (FEM) is one of the.most — w2uoto/ @ e BEdv=0. )
effective and versatile techniques for the modeling of Q

complex microwave devices [1]. Its application to practicah order to address the general case, the computational domain

engineering problems often results in large linear systemss assumed to be bounded by both microwave port boundaries

requiring iterative methods for their numerical solution(s;, i = 1,2, ..., N) and a numerical truncation boundary

However, the convergence of iterative solvers tends to be S, on which a first-order absorbing boundary condition is

unpredictable for electromagnetic wave problems, even whigiposed.

common preconditioners, such as incomplete LU factorization,On each waveguide port, it is assumed that the associated

are being used to improve convergence. The reasons for thedes are available for the representation of the fields. To sim-

slow convergence of the iterative solver are by now weflify the presentation and without loss of generality, it is as-

understood and are associated with the spurious dc mod@ged that at each waveguide port only the fundamental mode

contained in the null space of the curl operator [2], [3], angropagates. Following standard microwave circuit analysis pro-

the ill-conditioning of the FEM matrix resulting from thecedures, letS; be the excitation port. The weak form of the

oversampling of the low-frequency physical modes [5], [6]. A8riven problem becomes

it was proposed in [4], the spurious dc modes can be cancel

by introducing a spurious electric charge and imposing th;dv x5V x Edv +jk0/ Axad-nx Eds

divergence free conditiony - D = 0. Use of the vector-scalar /% So

potential (A — V) formulation for the development of the FEM N

approximation is most suitable for this purpose. On the other - ijz:i

hand, the difficulties associated with low-frequency physical

modes can be tackled well using the nested multigrid method= 2%, 1/ AXW-A X e ds 3

[6], [7]. More specifically, those modes that are over-sampled S

on the original FEM grid can be solved without loss of accuraayherek. ; is the propagation constant for tktl port ande; is

using a coarser grid and, subsequently, through an interpolatibhe normalized field distribution of the excitation mode $n

process, projected back onto the original grid. The associated FEM matrix form of the above weak statement
The success of these remedies has prompted their combiga-

tion into a nested multigrid vector-scalar potential finite element - N

solver that was shown to exhibit outstanding convergence in Mgprp = fi- (4)

conjunction with the analysis of two-dimensional eIectromaance the numerical solution has been obtained, the reflection

netic scattering problems [7]. This paper presents the eXtenSt':%%fﬁcient at portS; and the transmission coefficients at the

remaining ports are obtained as follows

/ﬁxw~ﬁxEds—w2uoeo/u7~e,,Edv
S Q

i=1
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Consequentlw?— V' matrix of (9) can be written in terms of (4)

M, Mhy I
A P _ Mh I G ,
< Mp, Mpy, ) < Gt ) zst! G)

h
R I
1%

wherel is the identity matrix [4].

o o ) . ~ This result suggests the following method for the calculation
The multigrid preconditioning used for the iterative solutiop ihe pseudo-residual equation of (6). Fird,— 7. Next, the

of (4) is described next. In the iterative solution of (3), th%quationMj;Azf; = r!is solved for the expansion coefficients

Fig. 1. Convergence behavior for various cube sizes.

pseduo-residual equation of the vector potential. This is followed by a correction step
associated with the explicit imposition of the weak form of the
M EEZE =TE (6) divergence-free requirement, which involves the solution of the

next equation
is transformed to the matrix equation for the vector and scalar
potential formulation. Mty i = GUrly — M 42 (12)
As suggested in [4], the electric field is written Bs= A+

VV. Thus the weak form of the vector wave equation (1) is The approximate solution of these two equations is effected

either through an incomplete Cholesky factorization or through
. . Gauss—Seidel method. Once the approximate solution on the
/ Vxw-VxAdv +jko/ nxw-ix (A+VV)ds  A—V formulation is obtained, it is transformed back#dor-
& So mulation using the relationship
+ijz,i/ﬁxw-ﬁx(21’+v1/)ds i
i 5 M= (1 G)(“;j). (13)
— w2u060/ w - e,,(fr—i— VV)du v
§2 The expansion of the single-level preconditioner of the

:2‘7'1%1/ A X W-n X & ds. (7) pseudo-residual equation to multilevel is described in the
S following typical multigrid pseudo-code, MGE, 7g).

) R 1) 2% — 0
The weak form of the divergence-free equation- D = 0 2) if coarsest grid, then soh&/% .z = ¢l

is obtained through its multiplication with the gradient of the 3) gse

scalar basis/¢ 3a) Relaxgh, %) for vy times.

) 13 Lk — M)

jko/ A X Vi x (A+VV)ds + ij/ i x Vo 3c) MG(2, r2
So i Si 3d) z% — z% + Ighz%h
3e) Relaxgh, rt) for v, times.

A X (A+VV)ds — w? V- e (A+VV)d ; ) iy .
Ax (At VV)ds—w NOGO/Q ¢ (At VV)dv Relax¢h, ) is the single-level preconditioner which

) R .o projects the problem to théd — V' formulation in order to
= 2jk= 1 /S1 A X V- i x & ds. ®) impose the divergence-free condition explicitig” is the
restriction operator that maps the residual of the fine grid onto
In matrix form, (7) and (8) are written as the coarser gridf};, is the interpolation operator that maps the
correction obtained on the coarser grid onto the fine grid. In
MY, MY, x’ " [7], it is shown I}, is the transition matrix between the bases
<M{5A Méﬁv) <x€> = < €L> (9)  on the coarse and fine grids afgl* is its transpose.

, . II. NUMERICAL RESULTS
whereM" , = M}, z"% andz{ contain the expansion coef-

ficients for the vector and scalar potential, respectively, and theTo implement the iterative FEM solver, the proposed precon-
entries of the remaining matrices become evident through a ditioner is combined with the conjugate gradient (CG) method.
rect comparison of (9) with (7) and (8). All calculations discussed in this paper were done on a Pen-
Let & denote the space spanned by the scalar basis functigitg 11l 600 MHz PC. The stopping criterion for the iterative
#, andW the space spanned by the vector edge-element begsver was||r|l = tol - || f|j Wheretol = 10~*. For all
functionsi. V& (Whitney-0 form) is a subset 8 (Whitney-1 the examples, a two-level multigrid was used, with the number
form) as discussed in [8]. Thus a transition matrix exists suéf pre-smoothing and post-smoothing operations taken to be
that vl = v2 = 2.
The low-pass filter studied in [1] is analyzed first. The dimen-
Vo = WG. (10) sions of the filter are shown in the insert of Fig. 2. The first-order
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Fig. 3. Convergence of the FEM solution of the low-pass filter.
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Fig. 2. Magnitude ofS parameters for a low-pass filter.
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Fig. 4. Magnitude of the& parameters for an annular microstrip resonator.

of CPU time required on the average for the solution at each fre-
guency point over the 1-10 GHz bandwidth of interest.

I1l. CONCLUSION

In conclusion, an efficient preconditioner has been proposed
and demonstrated for the robust, expedient, and broadband fi-
nite element analysis of microwave devices. Through the com-
bination thed — V formulation of the FEM approximation with
the multigrid method, the ill-conditioning of the FEM matrix is
avoided, and a fast converging conjugate gradient-based itera-
tive FEM solver results. On-going studies explore the extension
of the new algorithm to a broader class of electromagnetic prop-

absorbing boundary is placed 4mm away from the substrate
the side ends of the filter. On the finest grid, the average grid
size is 0.79 mm, and the number of unknowns is 60 534. On the

Aggtion, radiation, and scattering problems.
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